Background Recovery by Fixed-rank Robust Principal Component Analysis
ثبت نشده
چکیده
Background recovery is a very important theme in computer vision applications. Recent research shows that robust principal component analysis (RPCA) is a promising approach for solving problems such as noise removal, video background modeling, and removal of shadows and specularity. RPCA utilizes the fact that the background is common in multiple views of a scene, and attempts to decompose the data matrix constructed from input images into a low-rank matrix and a sparse matrix. This is possible if the sparse matrix is sufficiently sparse, which is often not the case in computer vision applications. Moreover, the weighting parameter between the low-rank and sparse matrices greatly affects the accuracy of the results, and tuning this parameter can be tricky. This paper proposes a fixed-rank RPCA algorithm (FRPCA) for solving background recovering problems. Fixing the rank of the low-rank matrix allows FRPCA to better recover the low-rank matrix from the data matrix. Comprehensive tests show that FRPCA produces more stable and accurate results than RPCA.
منابع مشابه
Incremental Fixed-Rank Robust PCA for Video Background Recovery
Video background recovery is a very important task in computer vision applications. Recent research offers robust principal component analysis (RPCA) as a promising approach for solving video background recovery. RPCA works by decomposing a data matrix into a low-rank matrix and a sparse matrix. Our previous work shows that when the desired rank of the low-rank matrix is known, fixing the rank ...
متن کاملBackground Recovery by Fixed-Rank Robust Principal Component Analysis
Background recovery is a very important theme in computer vision applications. Recent research shows that robust principal component analysis (RPCA) is a promising approach for solving problems such as noise removal, video background modeling, and removal of shadows and specularity. RPCA utilizes the fact that the background is common in multiple views of a scene, and attempts to decompose the ...
متن کاملFast Automatic Background Extraction via Robust PCA
Recent years have seen an explosion of interest in applications of sparse signal recovery and low rank matrix completion, due in part to the compelling use of the nuclear norm as a convex proxy for matrix rank. In some cases, minimizing the nuclear norm is equivalent to minimizing the rank of a matrix, and can lead to exact recovery of the underlying rank structure, see [Faz02, RFP10] for backg...
متن کاملRobust Transfer Principal Component Analysis with Rank Constraints
Principal component analysis (PCA), a well-established technique for data analysis and processing, provides a convenient form of dimensionality reduction that is effective for cleaning small Gaussian noises presented in the data. However, the applicability of standard principal component analysis in real scenarios is limited by its sensitivity to large errors. In this paper, we tackle the chall...
متن کاملPhaseLift is robust to a constant fraction of arbitrary errors
Consider the task of recovering an unknown n-vector from phaseless linear measurements. This nonconvex problem may be convexified into a semidefinite rank-one matrix recovery problem, known as PhaseLift. Under a linear number of Gaussian measurements, PhaseLift recovers the unknown vector exactly with high probability. Under noisy measurements, the solution to a variant of PhaseLift has error p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012